

Available online at www.sciencedirect.com

Catalysis Today 89 (2004) 183-191

Partial oxidation of methane to syngas over glow discharge plasma treated Ni–Fe/Al₂O₃ catalyst

Jian-guo Wang a,b , Chang-jun Liu a,b,* , Yue-ping Zhang c , Kai-lu Yu a,b , Xin-li Zhu a,b , Fei He a,b

^a Key Laboratory of Green Chemical Technology, School of Chemical Engineering, Tianjin University, Tianjin 300072, China
^b ABB Plasma Greenhouse Gas Chemistry Laboratory, Tianjin University, Tianjin 300072, China
^c Department of Chemistry, Tianjin University, Tianjin 300072, China

Abstract

Ni–Fe/Al $_2O_3$ catalyst for partial oxidation of methane was prepared first by glow discharge plasma treatment following by calcinations thermally. Such prepared catalyst exhibits better performance over the catalyst prepared without such plasma treatment. The conversion of methane and the selectivity of CO and H_2 over the plasma treated catalyst are 97.44, 100 and 100% at 875 °C, while, at the same temperature, they are 90.09, 97.28 and 97.09%, respectively, over the catalyst prepared without plasma treatment. At the same methane conversion, the reaction temperature with the plasma treated Ni–Fe/Al $_2O_3$ is at least 80 °C lower. TEM characterization shows that the catalytically active species after plasma treatment are still highly dispersed on the support. In addition, the plasma treated Ni–Fe/Al $_2O_3$ catalyst also possesses better anti-carbon deposit ability.

© 2003 Elsevier B.V. All rights reserved.

Keywords: Glow discharge; Plasma; Ni/Al₂O₃; Partial oxidation; Catalyst; Methane; Syngas

1. Introduction

Syngas (a mixture of CO and H₂) is a very important feedstock for the production of many important chemicals, like methanol, ammonia and synthetic fuels [1]. A major syngas production is via the steam reforming of natural gas, with which methane is the principal component [2]. However, there exist several disadvantages with the steam reforming, like high-energy consumption and high H₂/CO ratio. Partial oxidation of methane to syngas is a very promising alternative to the steam reforming [3,4]. A great effort has been given to the partial oxidation methane for the syngas production. Some progresses have been achieved [4]. The catalysts investigated are mainly the transition metal (Ni, Co and Fe) [5,6] and the noble metal (Ru, Rh, Pd, Pt and Ir) supported catalysts [7–11]. Among these catalysts, nickel-based catalysts, such as Ni/Al₂O₃ [12–15], NiO–MgO [16–18], and NiO-rare earth oxides [19,20], show high activity and selectivity with low cost. In practice, Ni-based catalysts are more promising than noble metal catalysts. However, the reaction

with the nickel-based catalysts starts only at high temperature [21], and coke deposition on nickel is much faster than that on noble metals [22]. Therefore, the development of coking-resistant Ni-based catalyst with lower temperature activity is very important for the future application of partial oxidation of methane for syngas production.

Previous investigations have found that the highly dispersed nano-structured catalyst can inhibit the coke formation and present a better activity [23,24]. It has been reported that thermal plasma can be used for the production of highly dispersed catalysts [25]. Vissokov and Panayotova applied plasma synthesis and regeneration of catalyst for reforming of methane [26]. Zhang et al. also reported a radio frequency plasma treatment for Ni-Al₂O₃ catalyst [27] and a 3-5% higher methane conversion has been achieved. In this work, we attempt to use a glow discharge treatment following by calcinations thermally to produce the highly dispersed nano-structured Ni-Fe/Al₂O₃ catalyst for a better syngas production via partial oxidation of methane. Glow discharge is a non-thermal plasma phenomenon. Different from the thermal plasma [26] and from the plasma used for the activation of catalyst [27], the glow discharge operates at room temperature and low pressure. Highly energetic

^{*} Corresponding author. Fax: +86-22-27890078. E-mail address: changliu@public.tpt.tj.cn (C.-j. Liu).

electrons normally characterize most regions of glow discharge [25] and induce a lot of unusual phenomena.

2. Experimental

2.1. Catalyst preparation

The conventional wetness impregnation has been applied for the preparation of Ni-Fe/Al₂O₃ catalyst (Ni:Fe:Al₂O₃ = 7:3:90 (wt.)). The Al₂O₃ powder support was first impregnated in an aqueous solution of Ni(NO₃)₂ and Fe(NO₃)₃ for ca. 6h at room temperature. After impregnation, the obtained sample was then divided into two parts: one for calcinations at 600 °C for 6h after drying at 90 °C for 16h, and the other for plasma treatment at room temperature for only 1 h before further calcinations at 600 °C for 6 h. In this work, we have successfully utilized a dc glow discharge for plasma treatment of catalyst. The electrode configuration of plasma is the same with the previous literature (Fig. 1(a) in [25]). The catalyst was located in the "positive column" of glow discharge [25] that was generated at ca. 12 Pa and at room temperature using argon as the glow discharge plasma-forming gas. The treatment time was ca. 1 h.

2.2. Partial oxidation of methane to syngas

The catalyst was pressed, crushed and sieved to $40{\text -}60$ meshes before test. The catalyst was then placed in a 6 mm i.d. quartz tube flow reactor. The catalyst weight is 40 mg. The schematic diagram of the setup used for the partial oxidation is shown in Fig. 1. Before reaction, the catalyst was reduced in a flowing hydrogen for 1 h at 650 with the flow rate of $50 \text{ cm}^3/\text{min}$. The reaction temperature was measured by a thermocouple attaching directly to the catalyst bed. The feed was a mixture of methane and oxygen (CH₄:O₂ = 2:1). The feed and the product gases were analyzed by an on-line gas chromatograph (Agilent 4890) using a thermal conductivity detector (TCD) with a TDX-01 column.

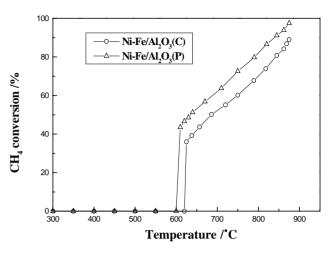


Fig. 2. Effect of the reaction temperature on CH₄ conversion. Reaction conditions: Ni:Fe:Al₂O₃ = 7:3:90 (wt.), P=1 atm, GHSV = 90 000 cm³/g h, CH₄/O₂ = 2.

2.3. Catalyst characterization

The surface area of catalysts applied was determined by nitrogen adsorption using a CHEMBET3000 apparatus. The morphology of the fresh and used catalysts was observed with a JEOL JEM-100CX II transmission electron microscope (TEM). The X-ray diffraction (XRD) characterization was conducted using a D-MAX-2500X-R diffractometer (Cu K α , 40 kV, 100 mA). X-ray photoelectron spectroscopy (XPS) studies were performed using a PHI1600 XPS system with Al K α radiation.

3. Results and discussion

3.1. Catalyst activity and selectivity

The catalytic tests were performed with a temperature range from 300 to 875 °C. The effect of the reaction temperature on the conversion of methane is shown in Fig. 2. In the following discussions, the catalyst prepared without

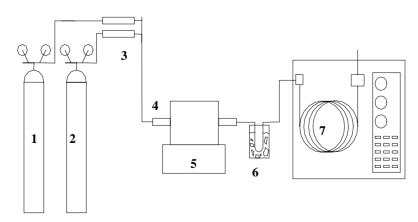


Fig. 1. Schematic diagram of the equipment used for partial oxidation of methane: 1, CH₄ cylinder; 2, oxygen cylinder; 3, mass flow controllers; 4, reactor; 5, furnace; 6, ice trap; 7, GC.

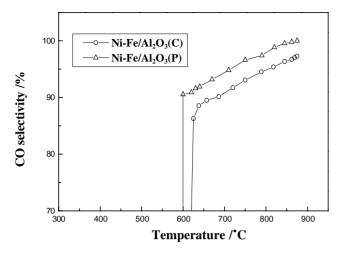


Fig. 3. Effect of the reaction temperature on CO selectivity. Reaction conditions: Ni:Fe:Al₂O₃ = 7:3:90 (wt.), P = 1 atm, GHSV = $90\,000\,\text{cm}^3/\text{g}\,\text{h}$, CH₄/O₂ = 2.

plasma treatment is referred to as Ni–Fe/Al₂O₃(C), and the plasma treated catalyst is referred to as Ni–Fe/Al₂O₃(P).

Fig. 2 shows Ni–Fe/Al₂O₃(P) is more active than Ni–Fe/Al₂O₃(C). The reaction initiative temperature (*T*₁) for Ni–Fe/Al₂O₃(P) was 600 °C, 25 °C lower than that with Ni–Fe/Al₂O₃(C). The syngas production from partial oxidation of methane over the reported conventional Ni/Al₂O₃ catalyst started at ca. 750 °C [21]. Ni–Fe/Al₂O₃(P) shows a much better low temperature activity. The methane conversion for Ni–Fe/Al₂O₃(P) catalyst within this temperature range is 6–12% higher than that obtained over the conventional catalyst. At the same methane conversion, the reaction temperature with Ni–Fe/Al₂O₃(P) is at least 80 °C lower than that with Ni–Fe/Al₂O₃(C).

The effect of temperature on the selectivity of CO and H_2 is shown in Figs. 3 and 4. In the temperature range discussed,

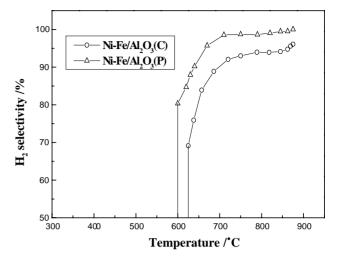


Fig. 4. Effect of the reaction temperature on H_2 selectivity. Reaction conditions: Ni:Fe:Al₂O₃ = 7:3:90 (wt.), P = 1 atm, GHSV = 90 000 cm³/g h, CH₄/O₂ = 2.

the selectivity of CO is 90.53–100% over Ni–Fe/Al₂O₃(P), which is 3–7% higher than that over Ni–Fe/Al₂O₃(C). The selectivity of H₂ over Ni–Fe/Al₂O₃(P) is more than 95% at the temperature higher than 700 °C. At 875 °C, the selectivity of both CO and H₂ reaches 100%. The H₂/CO ratio of syngas over Ni–Fe/Al₂O₃(P) is ca. 2, which is very suitable for further Fisher–Tropsch synthesis or methanol synthesis. The selectivity of H₂ over Ni–Fe/Al₂O₃(C) is 5–8% lower than that over Ni–Fe/Al₂O₃(P). Oxygen is completely consumed for both catalysts. The methane conversion and the selectivity of CO and H₂ over Ni–Fe/Al₂O₃(P) are 97.44, 100 and 100%, respectively, at 875 °C. At the same temperature, the methane conversion and the selectivity of CO and H₂ over Ni–Fe/Al₂O₃(C) are 90.09, 97.28 and 97.09%, respectively.

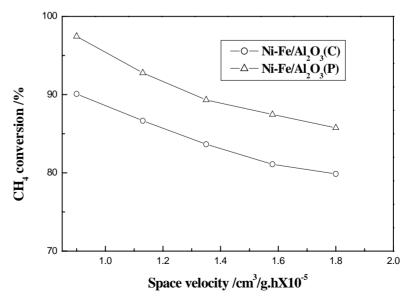


Fig. 5. Effect of space velocity on CH₄ conversion. Reaction conditions: Ni:Fe:Al₂O₃ = 7:3:90 (wt.), P = 1 atm, T = 875 °C, CH₄/O₂ = 2.

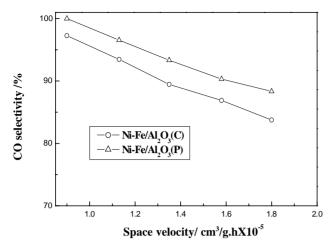


Fig. 6. Effect of space velocity on CO selectivity. Reaction conditions: Ni:Fe:Al $_2$ O $_3$ = 7:3:90 (wt.), P = 1 atm, T = 875 $^{\circ}$ C, CH $_4$ /O $_2$ = 2.

The effect of space velocity on reaction was also investigated at 875 °C. Figs. 5 and 6 were shown the change of methane conversion and CO selectivity with the space velocity. With increasing in space velocity, the activity and selectivity decreased for both catalysts.

3.2. Catalyst characterization

The experimental investigation has shown Ni–Fe/Al $_2$ O $_3$ (P) presents a better activity and selectivity than Ni–Fe/Al $_2$ O $_3$ (C). To understand such plasma-enhanced activity, catalyst characterization has been conducted as discussed below.

3.2.1. Plasma treatment effect on catalyst surface area From the BET analyses, the surface area of the fresh Ni–Fe/Al₂O₃(C) and the fresh Ni–Fe/Al₂O₃(P) is 156.21 and 136.21 m²/g, respectively.

Table 1							
Comparison	of	surface	atomic	compositions	from	XPS	analysis

Atom	Atomic ratio (%)							
	Ni–Fe/Al	2O ₃ (C)	Ni–Fe/Al ₂ O ₃ (P)					
	Fresh	Used	Fresh	Used				
O 1s	62.0	48.1	60.7	54.8				
Na 1s	0.4	1.0	0.4	0.8				
Fe 2p	1.6	0.8	1.2	1.1				
Al 2p	26.2	22.5	26.1	26.8				
Ni 2p	3.8	1.3	4.4	1.5				
C 1s	6.1	26.4	7.1	15.0				

3.2.2. XPS study

Table 1 showed the surface compositions for the fresh and used Ni–Fe/Al₂O₃(C) and Ni–Fe/Al₂O₃(P) catalysts. For two kinds of fresh catalysts, carbon content is almost the same. But after reaction, a sharp increase in the carbon content for the Ni–Fe/Al₂O₃(C) is observed when comparing to Ni–Fe/Al₂O₃(P). The increased carbon amount for Ni–Fe/Al₂O₃(C) is 2.5 times higher than that for Ni–Fe/Al₂O₃(P).

The XPS spectra of the fresh Ni–Fe/Al₂O₃(C) and Ni–Fe/Al₂O₃(P) catalysts in C 1s region are showed in Figs. 7 and 8. For two fresh catalysts, the prominent peaks are both at a binding energy of \sim 284.6 eV in the spectra, which are attributed to the adventitious carbon. The other two small peaks at a binding energy of 286.5 and 288.60 eV may be from some adventitious carbonaceous species and the residual CO₃²⁻. Figs. 9 and 10 show the XPS spectra of the used Ni–Fe/Al₂O₃(C) and Ni–Fe/Al₂O₃(P) in C 1s region, respectively. After reaction, a small peak appears at binding energy of 282.8 eV on the used Ni–Fe/Al₂O₃(P), which should be assigned to graphitic carbon. But for the used Ni–Fe/Al₂O₃(C), two new and very prominent

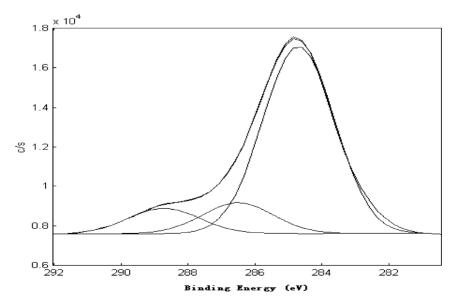


Fig. 7. XPS spectra of fresh Ni-Fe/Al₂O₃(C) in C 1s region.

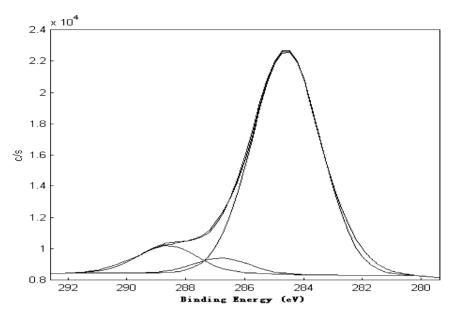


Fig. 8. XPS spectra of fresh Ni-Fe/Al₂O₃(P) in C 1s region.

peaks appeared at binding energy of 280.6 and 282.4 eV. They should be attributed to the metal carbide species and graphitic carbon. And these two kinds of carbon species take 75% in the amount of all carbon species on the used Ni–Fe/Al₂O₃(C), while the amount of the graphitic carbon are about 32% and no metal carbide species were formed with the used Ni–Fe/Al₂O₃(P). Obviously Ni–Fe/Al₂O₃(P) has better anti-carbon deposit ability than Ni–Fe/Al₂O₃(C).

The Ni 2p spectra of the fresh Ni–Fe/Al₂O₃(C) and Ni–Fe/Al₂O₃(P) are present in Fig. 11. In the near-surface region of the fresh catalysts, Ni was characteristic of NiAl₂O₄, which is shown by the Ni 2p_{3/2} peak at the bind-

ing energy of \sim 856 eV, with an accompanying shake-up satellite peak at \sim 862 eV [28,29]. The intensity of NiAl₂O₄ peak for the Ni–Fe/Al₂O₃(P) was slightly higher than that for Ni–Fe/Al₂O₃(C). The Ni 2p spectra of the used Ni–Fe/Al₂O₃(C) and Ni–Fe/Al₂O₃(P) are shown in Fig. 12. After reaction, metal Ni presents, characterized by a Ni 2p_{3/2} peak at a binding energy \sim 854.5 eV. The intensity of the satellite peak is reduced [29,30]. The metal Ni has been considered as the active component for partial oxidation of methane [31–34]. From Fig. 12, it can be also seen that the intensity of metal Ni for Ni–Fe/Al₂O₃(P) is much higher than that for Ni–Fe/Al₂O₃(C). It could explain that

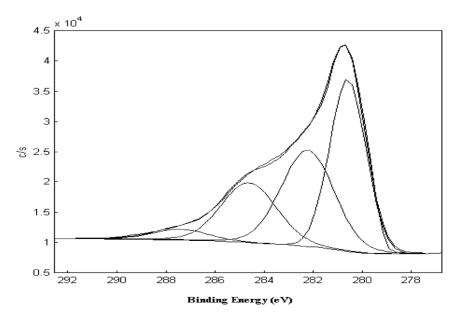


Fig. 9. XPS spectra of used Ni–Fe/Al₂O₃(C) in C 1s region. Reaction conditions: Ni:Fe:Al₂O₃ = 7:3:90 (wt.), P=1 atm, GHSV = $90\,000\,\text{cm}^3/\text{g}\,\text{h}$, CH₄/O₂ = 2, reaction time = $9\,\text{h}$.

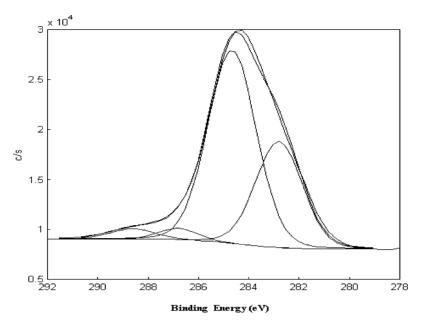


Fig. 10. XPS spectra of used Ni–Fe/Al₂O₃(P) in C 1s region. Reaction conditions: Ni:Fe:Al₂O₃ = 7:3:90 (wt.), P = 1 atm, GHSV = 90 000 cm³/g h, CH₄/O₂ = 2, reaction time = 9 h.

the activity and selectivity of Ni–Fe/Al₂O₃(P) is better than those of Ni–Fe/Al₂O₃(C).

3.2.3. TEM characterization

Figs. 13 and 14 present the TEM images of the fresh and used Ni–Fe/Al₂O₃(C) and Ni–Fe/Al₂O₃(P) catalysts. Catalytically active species (Ni) with a size in the range of 4–10 nm are highly dispersed on the support for Ni–Fe/Al₂O₃(P). For Ni–Fe/Al₂O₃(C), some big aggregates are observed and the distribution of active species is not uniform. After reaction, a serious carbon deposit is observed on the catalyst Ni–Fe/Al₂O₃(C), as shown in

Fig. 13. In addition, the active species in Ni–Fe/Al₂O₃(C) tends to aggregate during reaction. However, the TEM characterization suggests too that the catalyst Ni–Fe/Al₂O₃(P) possesses an excellent anti-carbon deposit performance. As shown in Fig. 14, the active species of Ni–Fe/Al₂O₃(P) is just a little aggregated. Most active species are still highly dispersed on the support. The reason may be attributed to the interaction of active plasma species (a great amount of electrons, radicals, ions, and so on) with the catalyst. In the preparation process, we often treat several times to the same sample. So the catalytic active species (Ni) can be distributed more uniform when compared to the catalyst

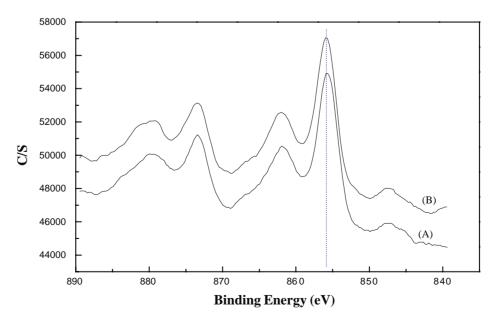
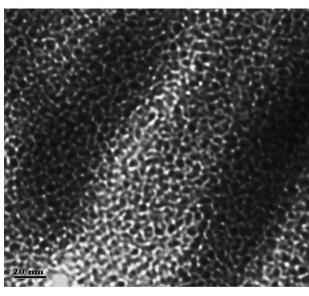
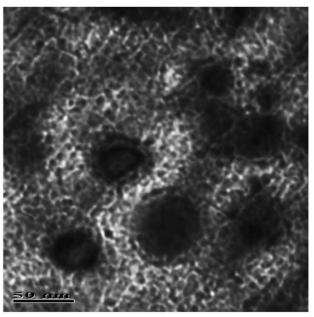


Fig. 11. XPS spectra of fresh catalysts in Ni 2p region: (A) Ni-Fe/Al₂O₃(C); (B) Ni-Fe/Al₂O₃(P).

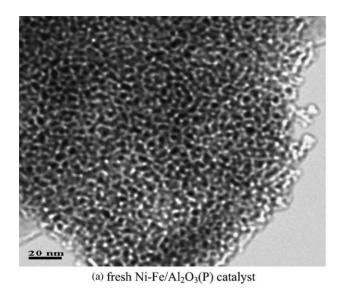


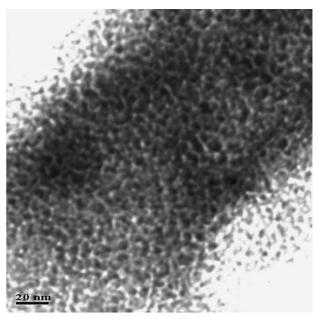

Fig. 12. XPS spectra of used catalysts in Ni 2p region: (A) Ni–Fe/Al₂O₃(C); (B) Ni–Fe/Al₂O₃(P). Reaction conditions: Ni:Fe:Al₂O₃ = 7:3:90 (wt.), P = 1 atm, GHSV = 90 000 cm³/g h, CH₄/O₂ = 2, reaction time = 9 h.


prepared without plasma treatment. And the addition of Fe can also stabilize the active nickel species [24]. Therefore, the carbon deposit can sharply decrease due to the uniform distribution of active species and the uniform particle distribution.

3.2.4. XRD characterization

XRD diagram of the fresh and hydrogen reduced Ni–Fe/Al₂O₃(C) and Ni–Fe/Al₂O₃(P) was shown in Fig. 15.


For the fresh Ni–Fe/Al₂O₃(C) catalysts, the identifiable phases were γ -Al₂O₃ and NiAl₂O₄. After reduction using hydrogen, the results of the XRD patterns show that the appearance zero-valent Ni metal besides the γ -Al₂O₃ and NiAl₂O₄, which also confirmed that zero-valent Ni metal was responsible for partial oxidation methane to syngas. It is consistent with the XPS results. Comparing to the Ni–Fe/Al₂O₃(C), Ni–Fe/Al₂O₃(P) catalysts did not show the peak with d=4.4505 (NiAl₂O₄). Evidently, the Ni



(a) fresh Ni-Fe/Al₂O₃(C) catalyst (b) used Ni-Fe/Al₂O₃(C) catalyst

Fig. 13. TEM images of Ni–Fe/Al₂O₃(C). Reaction conditions: Ni:Fe:Al₂O₃ = 7:3:90 (wt.), P = 1 atm, GHSV = $90\,000\,\mathrm{cm^3/g}\,\mathrm{h}$, CH₄/O₂ = 2, reaction time = $9\,\mathrm{h}$.

(b) used Ni-Fe/Al₂O₃(P) catalyst

Fig. 14. TEM images of Ni–Fe/Al₂O₃(P). Reaction conditions: Ni:Fe:Al₂O₃ = 7:3:90 (wt.), P = 1 atm, GHSV = $90\,000\,\mathrm{cm^3/g}$ h, CH₄/O₂ = 2, reaction time = $9\,\mathrm{h}$.

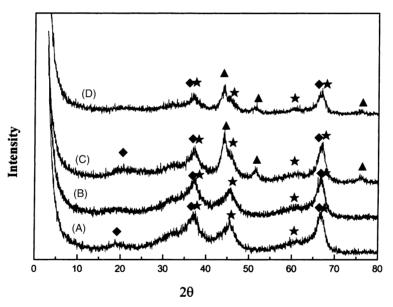


Fig. 15. XRD patterns: (A) fresh Ni–Fe/Al $_2$ O $_3$ (C); (B) fresh Ni–Fe/Al $_2$ O $_3$ (P); (C) reduced Ni–Fe/Al $_2$ O $_3$ (C); (D) reduced Ni–Fe/Al $_2$ O $_3$ (P). (\spadesuit) NiAl $_2$ O $_4$; (\bigstar) γ -Al $_2$ O $_3$; (\spadesuit) Ni.

species are different over the catalysts prepared in different ways. The plasma treatment would lead to a production of more active Ni species.

4. Conclusions

The present investigation confirms the glow discharge treatment of Ni-Fe/Al₂O₃ catalyst, following by calcinations thermally, leads to a preparation of catalyst with better

activity and selectivity for partial oxidation of methane to syngas. The catalyst characterization using XPS and XRD confirms that the discharge treatment induces a better generation of active Ni species. The conversion of methane and the selectivity of CO and H_2 over the plasma treated catalyst are 97.44, 100 and 100% at 875 °C, while, at the same temperature, they are 90.09, 97.28 and 97.09%, respectively. At the same methane conversion, the reaction temperature with the plasma treated Ni–Fe/Al $_2$ O $_3$ is at least 80 °C lower than that with the conventional Ni–Fe/Al $_2$ O $_3$. And the plasma

treated Ni–Fe/Al₂O₃ has better anti-carbon deposit ability than Ni–Fe/Al₂O₃(C) does.

Acknowledgements

The authors are grateful for supports from the Major Research Foundation of the Ministry of Education of China (under contract #Major 0212) and ABB Switzerland Ltd.

References

- [1] J.R. Anderson, Appl. Catal. 47 (1989) 177.
- [2] J.S.-J. Renesme, Y. Muller, Catal. Today 13 (1992) 371.
- [3] M.A. Pena, J.P. Gomez, J.L.G. Fierro, Appl. Catal. A 144 (1996) 7.
- [4] S.C. Tsang, J.B. Claridge, M.L.H. Green, Catal. Today 23 (1995) 3.
- [5] W.J.M. Vermeiren, E. Blomsma, P.A. Jacobs, Catal. Today 13 (1992) 427.
- [6] H.Y. Wang, E. Ruckenstein, J. Catal. 199 (2001) 309.
- [7] A.T. Ashcroft, A.K. Cheethan, J.S. Ford, M.L.H. Green, C.P. Grey, A.J. Murrel, P.D.F. Vernon, Nature 344 (1990) 319.
- [8] C. Elmasides, D.I. Kondarides, S.G. Neophytides, X.E. Verykios, J. Catal. 198 (2001) 195.
- [9] R.H. Jones, A.T. Aschcroft, D. Waller, A.K. Cheetham, J.M. Thomas, Catal. Lett. 8 (1991) 169.
- [10] D.A. Hichman, L.D. Schmidt, Science 259 (1993) 343.
- [11] P.M. Tormiainen, X. Chu, L.D. Schmidt, J. Catal. 146 (1994) 1.
- [12] Y. Lu, J. Xue, C. Yu, Y. Liu, S. Shen, Appl. Catal. A 174 (1998) 121.

- [13] Q. Miao, G. Xing, S. Sheng, W. Cui, L. Xu, X. Guo, Appl. Catal. A 154 (1997) 17.
- [14] L. Cao, Y. Chen, W. Li, Stud. Surf. Sci. Catal. 107 (1997) 467.
- [15] Q.G. Yan, W. Chu, L.Z. Gao, Z.L. Yu, S.Y. Yuan, Stud. Surf. Sci. Catal. 119 (1998) 855.
- [16] V.R. Choudhary, B.S. Uphade, A.S. Mamman, J. Catal. 172 (1997) 281
- [17] E. Ruckenstein, Y.H. Hu, Appl. Catal. A 183 (1999) 85.
- [18] S. Tang, J. Lin, K.L. Tan, Catal. Lett. 51 (1998) 169.
- [19] V.R. Choudhary, A.M. Rajput, V.H. Rane, J. Phys. Chem. 96 (1992) 8686
- [20] V.R. Choudhary, V.H. Rane, A.M. Rajput, Catal. Lett. 22 (1993) 289
- [21] V.R. Choudhary, B. Prabhakar, A.M. Rajput, J. Catal. 157 (1995) 752.
- [22] J.B. Claridge, M.L.H. Green, S.C. Tsang, Catal. Lett. 22 (1993) 299.
- [23] T. Zhu, S.M. Flyzani, Appl. Catal. A 208 (2001) 403.
- [24] H. Provendier, C. Perit, C. Estournès, S. Libs, A. Kiennemann, Appl. Catal. A 180 (1999) 163.
- [25] C.J. Liu, G.P. Vissokov, B. Jang, Catal. Today 72 (2002) 173.
- [26] G.P. Vissokov, M.I. Panayotova, Catal. Today 72 (2002) 213.
- [27] Y. Zhang, W. Chu, W. Cao, C. Luo, X. Wen, K. Zhou, Plasma Chem. Plasma Process. 20 (2000) 137.
- [28] G.R. Gavalas, C. Phichitkul, G.E. Voecks, J. Catal. 88 (1984) 54.
- [29] K.T. Ng, D.M. Hercules, J. Phys. Chem. 80 (1976) 2094.
- [30] N.S. McIntyre, T.E. Rummery, M.G. Cook, D. Owen, J. Electrochem. Soc. 123 (1976) 1164.
- [31] D. Dhammike, P.R. Michael, C.C.K. Karl, H.L. Jack, J. Catal. 132 (1991) 117.
- [32] M.A. Goula, A.A. Lemonidou, W. Grünert, M. Baerns, Catal. Today 32 (1996) 149.
- [33] C.T. Au, H.Y. Wang, J. Catal. 167 (1997) 337.
- [34] F. van Looij, J.W. Geus, J. Catal. 168 (1997) 154.